MORTOLA JP: Heart rate in aquatic mammals

نویسنده

  • Jacopo P. MORTOLA
چکیده

Aquatic and semi-aquatic mammals, while resting at the water surface or ashore, breathe with a low frequency (f) by comparison to terrestrial mammals of the same body size, the difference increasing the larger the species. Among various interpretations, it was suggested that the low-f breathing is a consequence of the end-inspiratory breath-holding pattern adopted by aquatic mammals to favour buoyancy at the water surface, and evolved to be part of the genetic makeup. If this interpretation was correct it could be expected that, differently from f, the heart rate (HR, beats/min) of aquatic and semi-aquatic mammals at rest would not need to differ from that of terrestrial mammals and that their HR-f ratio would be higher than in terrestrial species. Literature data for HR (beats/min) in mammals at rest were gathered for 56 terrestrial and 27 aquatic species. In aquatic mammals the allometric curve (HR=191·M; M= body mass, kg) did not differ from that of terrestrial species (HR=212·M ) and their HR-f ratio (on average 32±5) was much higher than in terrestrial species (5±1) (P<0.0001). The comparison of these HR allometric curves to those for f previously published indicated that the HR-f ratio was body size-independent in terrestrial species while it increased significantly with M in aquatic species. The similarity in HR and differences in f between aquatic and terrestrial mammals agree with the possibility that the low f of aquatic and semi-aquatic mammals may have evolved for a non-respiratory function, namely the regulation of buoyancy at the water surface [Current Zoology 61 () : – , 2015 ].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The heart rate - breathing rate relationship in aquatic mammals: A comparative analysis with terrestrial species

Aquatic and semi-aquatic mammals, while resting at the water surface or ashore, breathe with a low frequency (f) by comparison to terrestrial mammals of the same body size, the difference increasing the larger the species. Among various interpretations, it was suggested that the low-f breathing is a consequence of the end-inspiratory breath-holding pattern adopted by aquatic mammals to favour b...

متن کامل

Cognitive control of heart rate in diving harbor porpoises

Marine mammals have adapted to forage while holding their breath in a suite of aquatic habitats from shallow rivers to deep oceans. The key to tolerate such extensive apnea is the dive response, which comprises bradycardia and peripheral vasoconstriction. Although initially considered an all-or-nothing reflex [1], numerous studies on freely diving marine mammals have revealed substantial dynami...

متن کامل

The physiology of bottlenose dolphins (Tursiops truncatus): heart rate, metabolic rate and plasma lactate concentration during exercise.

Despite speculation about the swimming efficiency of cetaceans, few studies have investigated the exercise physiology of these mammals. In view of this, we examined the physiological responses and locomotor energetics of two exercising adult Tursiops truncatus. Oxygen consumption, heart rate, respiratory rate and post-exercise blood lactate concentration were determined for animals either pushi...

متن کامل

Energetics of locomotion by the Australian water rat (Hydromys chrysogaster): a comparison of swimming and running in a semi-aquatic mammal.

Semi-aquatic mammals occupy a precarious evolutionary position, having to function in both aquatic and terrestrial environments without specializing in locomotor performance in either environment. To examine possible energetic constraints on semi-aquatic mammals, we compared rates of oxygen consumption for the Australian water rat (Hydromys chrysogaster) using different locomotor behaviors: swi...

متن کامل

The diving paradox: new insights into the role of the dive response in air-breathing vertebrates.

When aquatic reptiles, birds and mammals submerge, they typically exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues is reduced. The profound dive response that occurs during forced submergence sequesters blood oxygen for the brain and heart while allowing peripheral tissues to become anaerobic, thus protecting the animal from immediate asp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014